Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Fluorophenyl)-5-(4-methoxyphenyl)pyrazolidin-3-one

Bao-Jiang Dai,^a Yuan-Yuan Liu,^b Qing-Bing Xu,^b Jing Hu^b and Hong-Jun Zhu^b*

^aNantong Jiangshan Agrochemical & Chemicals Co Ltd, Nantong 226006, People's Republic of China, and ^bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 25 February 2009; accepted 26 February 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.164; data-to-parameter ratio = 14.9.

In the molecule of the title compound, $C_{16}H_{15}FN_2O_2$, the benzene rings are oriented at a dihedral angle of 88.61 (3)°. The five-membered ring adopts an envelope conformation. Intramolecular $C-H\cdots N$ hydrogen bonds result in the formation of two planar five-membered rings. In the crystal structure, intermolecular $N-H\cdots O$ and $C-H\cdots F$ hydrogen bonds link the molecules, forming $R_2^2(8)$ and $R_2^2(18)$ ring motifs. Weak $C-H\cdots \pi$ interactions may further stabilize the structure.

Related literature

For applications of pyrazolidin-3-one, see: Prakash *et al.* (2008); Nonaka (2003); Mabuchi & Ohtsuka (1999). For a related structure, see: Liu *et al.* (2008). For bond-length data, see: Allen *et al.* (1987). For ring motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data $C_{16}H_{15}FN_2O_2$ $M_r = 286.30$ Monoclinic, $P2_1/c$ a = 11.455 (2) Å

b = 7.1590 (14) Å
c = 18.136 (4) Å
$\beta = 101.05 \ (3)^{\circ}$
V = 1459.7 (5) Å ²

Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.969, \ T_{\max} = 0.991$
2991 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.164$ S = 1.012844 reflections frequency: 120 min intensity decay: none

2844 independent reflections 1869 reflections with $I > 2\sigma(I)$

191 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.18~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.18~e~{\rm \AA}^{-3} \end{split}$$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2A\cdotsO1^{i}$	0.86	1.98	2.838 (2)	175
$C5-H5A\cdots N2$	0.93	2.43	2.747 (3)	100
$C8-H8A\cdots F^{ii}$	0.97	2.45	3.388 (3)	164
C11−H11A···N1	0.93	2.53	2.885 (3)	103
$C2-H2B\cdots Cg2^{iii}$	0.93	2.71	3.589 (3)	157
$C15 - H15A \cdots Cg1^{iv}$	0.93	2.89	3.801 (3)	167

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z; (iii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) x, y + 1, z. *Cg*1 and *Cg*2 are centroids of the C1–C6 and C10–C15 rings, respectively.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2631).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Liu, Y.-Y., Wu, Z.-Y., Shi, H., Chu, Q.-Y. & Zhu, H.-J. (2008). Acta Cryst. E64, 02101.

Mabuchi, T. & Ohtsuka, T. (1999). Agrochem. Jpn, 75, 12-14.

Nonaka, N. (2003). Agrochem. Jpn, 83, 17-19.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Prakash, O., Kumar, R. & Parkash, V. (2008). *Eur. J. Med. Chem.* **43**, 435–440. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

T = 294 K

 $R_{\rm int} = 0.023$ 3 standard reflections

 $0.4 \times 0.4 \times 0.3 \ \text{mm}$

supplementary materials

Acta Cryst. (2009). E65, o675 [doi:10.1107/S1600536809007144]

1-(4-Fluorophenyl)-5-(4-methoxyphenyl)pyrazolidin-3-one

B.-J. Dai, Y.-Y. Liu, Q.-B. Xu, J. Hu and H.-J. Zhu

Comment

Nowadays, pyrazolidin-3-one and its derivatives used as pesticide have been developed most quickly, such as antiseptic (Prakash *et al.*, 2008), insecticide (Nonaka, 2003) and herbicide (Mabuchi & Ohtsuka, 1999). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C1-C6) and C (C10-C15) are, of course, planar, and they are oriented at a dihedral angle of 88.61 (3)°. The five-membered ring B (N1/N2/C7-C9) adopts envelope conformation with C7 atom displaced by 0.363 (3) Å from the plane of the other ring atoms. The intramolecular C-H···N hydrogen bonds (Table 1) results in the formations of two planar five-membered rings D (N1/N2/C4/C5/H5A) and E (N1/C7/C10/C11/H11A), in which they are oriented with respect to the adjacent rings at dihedral angles of A/D = 4.87 (3) and C/E = 0.86 (3)°. So, rings C and E are coplanar, while A and D are nearly coplanar.

In the crystal structure, intermolecular N-H···O and C-H···F hydrogen bonds (Table 2) link the molecules (Fig. 2) by forming the $R_2^2(8)$ and $R_2^2(18)$ ring motifs (Bernstein *et al.*, 1995), in which they may be effective in the stabilization of the structure. The weak C—H··· π interactions (Table 1) may further stabilize the structure.

Experimental

The title compound was prepared according to the literature method (Liu *et al.*, 2008). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (1.5 g) in ethyl acetate (25 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

1-(4-Fluorophenyl)-5-(4-methoxyphenyl)pyrazolidin-3-one

Crystal data

$C_{16}H_{15}FN_2O_2$	$F_{000} = 600$
$M_r = 286.30$	$D_{\rm x} = 1.303 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 11.455 (2) Å	$\theta = 10 - 13^{\circ}$
b = 7.1590 (14) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 18.136 (4) Å	T = 294 K
$\beta = 101.05 \ (3)^{\circ}$	Needle, colorless
$V = 1459.7 (5) \text{ Å}^3$	$0.4 \times 0.4 \times 0.3 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.023$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.8^{\circ}$
T = 294 K	$h = 0 \rightarrow 13$
$\omega/2\theta$ scans	$k = 0 \rightarrow 8$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -21 \rightarrow 21$
$T_{\min} = 0.969, \ T_{\max} = 0.991$	3 standard reflections
2991 measured reflections	every 120 min
2844 independent reflections	intensity decay: none
1869 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.049$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.164$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
2844 reflections	$\Delta \rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$
191 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Determine the first state of the state of th	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.038 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.48784 (13)	0.2552 (2)	0.03274 (8)	0.0523 (4)
O2	0.38835 (15)	-0.1685 (2)	-0.36578 (8)	0.0597 (5)
N1	0.26509 (14)	0.3997 (2)	-0.11625 (9)	0.0405 (4)
N2	0.37005 (14)	0.4183 (2)	-0.06107 (10)	0.0468 (5)
H2A	0.4116	0.5192	-0.0556	0.056*
F	-0.11183 (16)	0.8402 (3)	-0.07221 (14)	0.1260 (8)
C1	-0.0185 (2)	0.7276 (4)	-0.08105 (18)	0.0724 (8)
C2	-0.0298 (2)	0.6229 (4)	-0.14437 (16)	0.0694 (8)
H2B	-0.0996	0.6247	-0.1803	0.083*
C3	0.0654 (2)	0.5135 (3)	-0.15406 (13)	0.0541 (6)
H3A	0.0603	0.4424	-0.1975	0.065*
C4	0.16815 (17)	0.5086 (2)	-0.09998 (11)	0.0393 (5)
C5	0.1755 (2)	0.6150 (3)	-0.03597 (12)	0.0525 (6)
H5A	0.2443	0.6122	0.0009	0.063*
C6	0.0806 (2)	0.7261 (4)	-0.02653 (17)	0.0723 (8)
H6A	0.0848	0.7985	0.0165	0.087*

supplementary materials

C7	0.24222 (18)	0.1930 (3)	-0.12010 (11)	0.0393 (5)
H7A	0.1569	0.1709	-0.1237	0.047*
C8	0.30920 (19)	0.1193 (3)	-0.04418 (10)	0.0436 (5)
H8A	0.2559	0.1040	-0.0090	0.052*
H8B	0.3472	0.0006	-0.0501	0.052*
C9	0.39987 (18)	0.2682 (3)	-0.01826 (11)	0.0416 (5)
C10	0.28206 (17)	0.1019 (3)	-0.18638 (10)	0.0391 (5)
C11	0.33591 (18)	0.1959 (3)	-0.23771 (11)	0.0443 (5)
H11A	0.3490	0.3238	-0.2323	0.053*
C12	0.3703 (2)	0.1032 (3)	-0.29659 (11)	0.0486 (5)
H12A	0.4069	0.1687	-0.3302	0.058*
C13	0.35087 (19)	-0.0874 (3)	-0.30603 (10)	0.0455 (5)
C14	0.2963 (2)	-0.1830 (3)	-0.25569 (13)	0.0592 (7)
H14A	0.2825	-0.3107	-0.2613	0.071*
C15	0.2625 (2)	-0.0876 (3)	-0.19703 (12)	0.0560 (6)
H15A	0.2254	-0.1529	-0.1636	0.067*
C16	0.3801 (2)	-0.3669 (4)	-0.37188 (14)	0.0655 (7)
H16A	0.4084	-0.4069	-0.4158	0.098*
H16B	0.2987	-0.4044	-0.3758	0.098*
H16C	0.4276	-0.4230	-0.3281	0.098*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0529 (9)	0.0421 (9)	0.0565 (9)	0.0060 (7)	-0.0034 (7)	0.0017 (7)
02	0.0751 (11)	0.0584 (11)	0.0486 (9)	-0.0018 (8)	0.0194 (8)	-0.0099 (7)
N1	0.0387 (9)	0.0295 (9)	0.0521 (10)	0.0020 (7)	0.0053 (7)	-0.0001 (7)
N2	0.0361 (9)	0.0319 (9)	0.0678 (11)	-0.0014 (7)	-0.0017 (8)	0.0030 (8)
F	0.0732 (12)	0.1078 (16)	0.200 (2)	0.0392 (11)	0.0325 (13)	-0.0413 (15)
C1	0.0470 (14)	0.0575 (16)	0.114 (2)	0.0138 (12)	0.0199 (15)	-0.0134 (15)
C2	0.0464 (14)	0.0637 (17)	0.0911 (19)	0.0095 (12)	-0.0040 (13)	-0.0011 (15)
C3	0.0482 (13)	0.0478 (13)	0.0622 (14)	0.0055 (10)	-0.0001 (10)	-0.0054 (11)
C4	0.0425 (11)	0.0267 (10)	0.0486 (11)	0.0025 (8)	0.0082 (9)	0.0043 (8)
C5	0.0536 (13)	0.0472 (13)	0.0551 (13)	0.0021 (10)	0.0069 (10)	-0.0084 (10)
C6	0.0711 (18)	0.0606 (17)	0.0880 (19)	0.0055 (13)	0.0226 (15)	-0.0289 (14)
C7	0.0399 (10)	0.0281 (10)	0.0501 (11)	-0.0005 (8)	0.0090 (9)	0.0009 (8)
C8	0.0552 (13)	0.0344 (11)	0.0425 (11)	-0.0020 (9)	0.0131 (9)	0.0010 (9)
C9	0.0455 (11)	0.0328 (11)	0.0476 (11)	0.0064 (9)	0.0122 (9)	-0.0014 (9)
C10	0.0441 (11)	0.0322 (10)	0.0395 (10)	0.0001 (8)	0.0044 (8)	0.0022 (8)
C11	0.0478 (12)	0.0341 (10)	0.0495 (12)	-0.0044 (9)	0.0060 (9)	0.0027 (9)
C12	0.0550 (13)	0.0484 (13)	0.0434 (11)	-0.0081 (10)	0.0120 (10)	0.0032 (9)
C13	0.0501 (12)	0.0479 (13)	0.0365 (10)	0.0015 (10)	0.0032 (9)	-0.0026 (9)
C14	0.0896 (19)	0.0362 (12)	0.0557 (13)	-0.0053 (12)	0.0238 (13)	-0.0048 (10)
C15	0.0857 (17)	0.0367 (12)	0.0518 (12)	-0.0080 (11)	0.0287 (12)	0.0011 (9)
C16	0.0717 (16)	0.0648 (16)	0.0614 (14)	-0.0109 (13)	0.0162 (12)	-0.0278 (13)
Geometric parai	meters (Å, °)					

01–C9 1.234 (2) C7–C8 1.536 (3)

O2—C13	1.369 (2)	C7—C10	1.513 (3)
O2—C16	1.427 (3)	C7—H7A	0.9800
N1—N2	1.415 (2)	C8—H8A	0.9700
N1—C4	1.433 (2)	С8—Н8В	0.9700
N1—C7	1.502 (2)	С9—С8	1.500 (3)
N2—C9	1.331 (2)	C10—C15	1.382 (3)
N2—H2A	0.8600	C11—C10	1.386 (3)
FC1	1.372 (3)	C11—C12	1.378 (3)
C2—C1	1.357 (4)	C11—H11A	0.9300
C2—H2B	0.9300	C12—C13	1.388 (3)
C3—C2	1.380 (3)	C12—H12A	0.9300
С3—НЗА	0.9300	C13—C14	1.382 (3)
C4—C3	1.381 (3)	C14—C15	1.381 (3)
C4—C5	1.378 (3)	C14—H14A	0.9300
C5—C6	1.384 (3)	C15—H15A	0.9300
С5—Н5А	0.9300	C16—H16A	0.9600
C6—C1	1.356 (4)	C16—H16B	0.9600
С6—Н6А	0.9300	C16—H16C	0.9600
C13—O2—C16	117 22 (18)	С7—С8—Н8В	111.1
$N_2 - N_1 - C_4$	112 97 (15)	C9 - C8 - C7	103 53 (16)
$N_2 - N_1 - C_7$	104 02 (14)	C9—C8—H8A	111 1
C4 - N1 - C7	114 23 (15)	C9—C8—H8B	111.1
N1—N2—H2A	122.4	H8A—C8—H8B	109.0
C9 - N2 - N1	115 13 (16)	01 - C9 - N2	125 42 (19)
C9 = N2 = H2A	122.4	01 - 09 - 08	126.12(19) 126.75(18)
C^2 — C^1 — F	118 3 (3)	N_{2}^{2} C_{2}^{2} C_{3}^{2}	120.75(10) 107.82(17)
C6-C1-F	118.8 (3)	$C_{15} - C_{10} - C_{11}$	107.02(17) 117.64(19)
C6-C1-C2	122 9 (2)	$C_{15} - C_{10} - C_{7}$	117.01 (19)
C1 - C2 - C3	1122.9(2)	$C_{11} - C_{10} - C_{7}$	124 40 (18)
C1 - C2 - H2B	120.9	C10-C11-H11A	119.4
$C_3 - C_2 - H_2B$	120.9	C_{12} C_{11} C_{10} C	121.1 (2)
$C_2 - C_3 - C_4$	120.7(2)	C12 $C11$ $H11A$	119.4
$C_2 = C_3 = H_3 A$	119.7	C11 - C12 - C13	120 42 (19)
$C_4 = C_3 = H_3 \Delta$	119.7	C_{11} C_{12} H_{12}	119.8
$C_3 = C_4 = N_1$	117.15 (18)	C13 - C12 - H12A	119.8
C5-C4-N1	123 33 (18)	02-C13-C14	1243(2)
C_{5} C_{4} C_{3}	119 40 (19)	02 - C13 - C12	124.5(2)
C4 - C5 - C6	1200(2)	$C_{14} - C_{13} - C_{12}$	110.30(19) 119.17(19)
C4-C5-H5A	120.0 (2)	$C_{14} = C_{13} = C_{12}$	119.17(19)
C6-C5-H5A	120.0	$C_{15} - C_{14} - H_{14A}$	119.0 (2)
C1-C6-C5	118.9 (2)	C13 - C14 - H14A	120.2
C1C6H6A	120.6	C10-C15-H15A	119.0
C5-C6-H6A	120.6	C_{14} C_{15} C_{10} C	112.0
N1-C7-C8	104 13 (15)	C_{14} C_{15} H_{15A}	122.1 (2)
N1_C7_C10	112 66 (16)	02H16A	109.5
N1_C7_H74	109.0	0216H16B	109.5
C8—C7—H7A	109.0	02 - C16 - H16C	109.5
C10_C7_C8	112 90 (16)	H164_C16_H16B	109.5
$C_{10} = C_{7} = H_{7}^{A}$	109.0		109.5
	107.0		107.0

supplementary materials

С7—С8—Н8А	111.1	H16B—C16—H16C	109.5
C4—N1—N2—C9	109.31 (19)	C4—C5—C6—C1	0.1 (4)
C7—N1—N2—C9	-15.1 (2)	C5—C6—C1—C2	0.8 (5)
N2—N1—C4—C3	174.02 (17)	C5—C6—C1—F	-178.9 (3)
N2—N1—C4—C5	-2.1 (3)	N1—C7—C8—C9	-21.70 (19)
C7—N1—C4—C3	-67.3 (2)	C10—C7—C8—C9	100.83 (19)
C7—N1—C4—C5	116.5 (2)	N1-C7-C10-C11	1.1 (3)
N2—N1—C7—C8	22.13 (18)	N1—C7—C10—C15	-178.22 (19)
N2-N1-C7-C10	-100.56 (17)	C8-C7-C10-C11	-116.5 (2)
C4—N1—C7—C8	-101.47 (18)	C8—C7—C10—C15	64.2 (2)
C4—N1—C7—C10	135.84 (17)	O1—C9—C8—C7	-165.5 (2)
N1—N2—C9—O1	179.81 (18)	N2-C9-C8-C7	13.5 (2)
N1—N2—C9—C8	0.8 (2)	C7-C10-C15-C14	-179.7 (2)
C16—O2—C13—C12	173.8 (2)	C11-C10-C15-C14	0.9 (3)
C16—O2—C13—C14	-6.0 (3)	C12-C11-C10-C7	179.69 (19)
C3—C2—C1—C6	-1.5 (4)	C12-C11-C10-C15	-1.0 (3)
C3—C2—C1—F	178.3 (3)	C10-C11-C12-C13	0.5 (3)
C4—C3—C2—C1	1.2 (4)	C11—C12—C13—O2	-179.71 (19)
N1—C4—C3—C2	-176.6 (2)	C11-C12-C13-C14	0.1 (3)
C5—C4—C3—C2	-0.4 (3)	O2-C13-C14-C15	179.7 (2)
N1—C4—C5—C6	175.7 (2)	C12-C13-C14-C15	-0.1 (4)
C3—C4—C5—C6	-0.3 (3)	C13—C14—C15—C10	-0.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots A$
N2—H2A···O1 ⁱ	0.86	1.98	2.838 (2)	175
C5—H5A···N2	0.93	2.43	2.747 (3)	100
C8—H8A…F ⁱⁱ	0.97	2.45	3.388 (3)	164
C11—H11A…N1	0.93	2.53	2.885 (3)	103
C2—H2B···Cg2 ⁱⁱⁱ	0.93	2.71	3.589 (3)	157
C15—H15A…Cg1 ^{iv}	0.93	2.89	3.801 (3)	167
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$; (ii) $-x$, $-y+1$, $-z$; (iii) $-x$, $y-1/2$, $-z+1/2$; (iv) x , $y+1$, z .				

Fig. 2

